Integration of SAR/InSAR Spectral-based Feature Extraction Procedures with Spectral Decomposition Methods for Scene Classification using TerraSAR-X Data

Anca Popescu
University Politehnica Bucharest (UPB)

Mihai Datcu
German Aerospace Center (DLR)

4. TerraSAR-X Science Team Meeting
14-16 February 2011, DLR – Oberpfaffenhofen
Motivation: High resolution scene category indexing, large number of structures visible in urban sites

Non-parametric feature extraction methods
Summary

• Introduction
• Data descriptors
 • Spectral features
 • Spectral components
• Experimental data
• Classification results
• Conclusions
Introduction

Study of value adding processing methods for SLC and interferometric SAR data, for scene classification
Introduction

Study of value adding processing methods for SLC and interferometric SAR data, for scene classification

Concept: make use of phase information

Direct Estimation from image spectra

Regularization based estimation + Bayesian Model order selection

Consistency validation
Data descriptors – spectral features

Direct estimation from spectra

Spectral differences

\[F_{(x,y)}^{(r,a)} = \sum_{r=1}^{M} \sum_{a=1}^{N} (N_{(x,y)}{(r,a)} - N_{(x-1,y)}{(r,a)})^2 \]

\[C_{(x,y)} = \frac{\sum_{r=1}^{M} \sum_{a=1}^{N} \mid S_{(x,y)}{(r,a)} \cdot t \mid}{\sum_{r=1}^{M} \sum_{a=1}^{N} \mid S_{(x,y)}{(r,a)} \mid} \]

\[\sum_{r=1}^{Rr} \sum_{a=1}^{Ra} \mid S_{(x,y)}{(r,a)} \mid = 0.85 \cdot \sum_{r=1}^{M} \sum_{a=1}^{M} \mid S_{(x,y)}{(r,a)} \mid \]

\[m_{(x,y)} = \frac{1}{M \times N} \sum_{r=1}^{M} \sum_{a=1}^{N} \mid S_{(x,y)}{(r,a)} \mid \]

\[\sigma^2{(x,y)} = \frac{1}{M \times N} \sum_{r=1}^{M} \sum_{a=1}^{N} (\mid S_{(x,y)}{(r,a)} - m{(x,y)} \mid)^2 \]
Data model

The 2-D signal model:

\[y_{n,m} = \sum_{k=1}^{K} \alpha_k \exp\{j2\pi(f_k n + \tilde{f}_k m)\} + e(n, m) \]

Where
- \(\alpha_k = a_k + jb_k \) complex amplitude of the \(k^{\text{th}} \) sinusoid
- \(f_k, \tilde{f}_k \) unknown frequencies of the \(k^{\text{th}} \) sinusoid
- \(e(n, m) \) 2-D noise

Problem: Estimate the parameters of the sinusoidal signals:
\[\alpha_k, f_k, \tilde{f}_k \]
Proposed method: RELAX algorithm

Model choice: minimize NLS criterion:

\[C_2 = \| y(n, \overline{n}) - \sum_{k=1}^{K} \alpha_k \exp\{j2\pi(f_k n + \bar{f}_k \overline{n})\} \|_F^2 \]

Algorithm preparations: if \(\alpha_k \) and \(f_k \) are known, then cost function to be minimized for the \(k \)th sinusoid is:

\[g_k = \sum_{n=0}^{N-1} | y_k(n, \overline{n}) - \alpha_k \exp\{j2\pi f_k n\} \exp\{j2\pi \bar{f}_k \overline{n}\} |^2 \]

Peak of the 2-D periodogram

\[(\hat{f}_k, \hat{f}_k) = \arg\max_{f_k, \bar{f}_k} \left| \sum_{n=0}^{N-1} y_k(n, \overline{n}) e^{-j2\pi f_k n} e^{-j2\pi \bar{f}_k \overline{n}} \right|^2 \]

Height of the peak (complex)

\[\alpha_k = \frac{1}{NN} \sum_{n=0}^{N-1} y_k(n, \overline{n}) e^{-j2\pi f_k n} e^{-j2\pi \bar{f}_k \overline{n}} \]

Data descriptors – spectral components

Spectral Estimation using RELAX

1. $K = 1 \Rightarrow \hat{f}_1, \hat{\alpha}_1$ are obtained from $y(n, \bar{n})$
2. $K = 2 \Rightarrow y_2(n, \bar{n})$ is obtained from $\hat{f}_1, \hat{\alpha}_1$
3. $\hat{f}_2, \hat{\alpha}_2$ are obtained from $y_2(n, \bar{n})$
4. $y_1(n, \bar{n})$ is obtained from $\hat{f}_2, \hat{\alpha}_2$
5. Iterate until practical convergence (cost function doesn't change significantly)
6. $K = 3 \Rightarrow y_3(n, \bar{n})$ is obtained from $\hat{f}_1, \hat{\alpha}_1, \hat{f}_2, \hat{\alpha}_2; \hat{f}_3, \hat{\alpha}_3$ are obtained from $y_3(n, \bar{n})$
7. $y_1(n, \bar{n})$ is obtained from $\hat{f}_3, \hat{\alpha}_3, \hat{f}_2, \hat{\alpha}_2; \hat{f}_1, \hat{\alpha}_1$ are obtained from $y_1(n, \bar{n})$
8. $y_2(n, \bar{n})$ is obtained from $\hat{f}_3, \hat{\alpha}_3, \hat{f}_1, \hat{\alpha}_1; \hat{f}_2, \hat{\alpha}_2$ are obtained from $y_2(n, \bar{n})$
9. Iterate until practical convergence (cost function doesn't change significantly)

.................
Data descriptors – spectral components

Model order selection. Estimation of number of components

AKAIKE Information Criterion

Estimates the expected Kullback-Leibler information between the model generating the data and a candidate model.

\[
\text{Kullback-leibler Information (distance between models)} \quad \text{Maximized log-likelihood (parameter estimation)}
\]

Model selection: \[\max_g E_y E_x \left[\log(g(x | \hat{\theta}(y))) \right] \]

\[\theta = \text{parameter to be estimated from empirical data } y \]

\[y = \text{generated from } f(x), X \text{ is a random variable} \]

Log likelihood function for model selection: \[\log(L(\hat{\theta} | y)) - k \]

Best Model: Minimum AIC value

\[AIC = -2 \log(L(\hat{\theta} | y)) + 2k \]
Methodology

Goal: assess parameter’s capability to discriminate scene classes

Evaluation: Accuracy = (TP+TN) / (TP+TN+FP+FN)
Test Site – Bucharest, Romania

TerraSAR-X High Resolution Spotlight: LAN 130
Experimental data – TSX LAN-130

<table>
<thead>
<tr>
<th>SLC Product type: HS SSC</th>
<th>Interferometric pair</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acquisition date: 30.09.2008</td>
<td>Master: HS SSC</td>
</tr>
<tr>
<td>Ground range resolution: 0.8905 m</td>
<td>Acquisition date: 11.10.2008</td>
</tr>
<tr>
<td>Azimuth resolution: 1.1000 m</td>
<td></td>
</tr>
<tr>
<td>Nr. of looks: 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Frequency of classes in database: dominant classes: tall blocks, green areas, urban fabric, commercial and industrial sites

- Commercial Units
- Construction site
- Continuous urban fabric
- Green urban areas
- Grid
- Industrial
- Large road
- Parking
- Parliament
- Rail
- Round and roundabout
- Sparsely vegetated areas
- Sport field
- Square block
- Stadion
- Tall block
- Tall block 1
- Tall concrete wall
- Very tall building
- Water course and bodies
- Disc. urban fabric

- T S X LAN – 130
Experimental data – TSX LAN-130
1650 SLC patches, 200 x 200 m; reduced interferometric database
Results – Spectral and cepstral parameters

Spectral Centroid, Flux, and Rolloff (azimuth and range)

Mean and variance of first 3 cepstral coefficients
Results – Spectral components

Relax parameter α_k (modulus representation), selection of six random components from the estimated stack
Results – Spectral Components

Reconstructed data from estimated spectral components and original SAR patch

Optimum number of components 30-40
Results – Spectral Components

Reconstructed data from estimated spectral components and original SAR patch

Small number of components: Not the best reconstruction

Optimum number of components: 30-40
Results – Spectral Components

Reconstructed data from estimated spectral components and original SAR patch

Small number of components: Not the best reconstruction

But are they representative for a class?

Optimum number of components: 30-40
Results – Scene Class Recognition

SLC

True Negative Rate indicator
Accuracy indicator

Results – Scene Class Recognition

SLC – Spectral Features and Spectral Components

![Graph showing accuracy indicators for spectral features and spectral components](image-url)
Results – Scene Class Recognition

InSAR

True Negative Rate indicator
Results – Scene Class Recognition

InSAR

Accuracy indicator

Accuracy InSAR Spectral features
Results – Scene Class Recognition

SLC+ InSAR

Influence of interferogram spectral features on classification accuracy
Conclusions

• Evaluation of the capability of spectral parameters to discriminate scene classes for complex HR TerraSAR-X data

• Spectral estimation method for high resolution data characterization and reconstruction, based on RELAX algorithm.

• Evaluation of the capability of spectral components to discriminate scene classes for complex HR TerraSAR-X data

• Accuracy of recognition better than 80% for main class training

• Acknowledgements to DLR team for providing the interferometric data: Nico Adam, Christian Minet, Nestor Yague-Martinez, Helko Breit.