TerraSAR-X Products – Tips and Tricks

Thomas Fritz (L1b Annotation, Geometry, Radiometry)
Helko Breit (Processing, Spectral Properties)
Michael Eineder (InSAR-Processing incl. Spotlight)

DLR Remote Sensing Technology Institute (IMF)

TerraSAR-X Science Meeting 2008-11-26
2nd Part: SAR Processing and Spectral Properties

(H. Breit)

This material is distributed for educational & test purposes only. The information is provided "as is". No warranty of any kind given. For TerraSAR-X product and format specifications refer to the current versions of the relevant documentation distributed by the commercial and science service segments.
Motivation for Understanding Spectral Properties

- In most situations detection of complex data requires oversampling of the complex data first in order to avoid aliasing.
- In many applications (e.g. interferometry) resampling / interpolation of complex data is required.

\[|u(t)|^2 = u(t) \cdot u^*(t) \]
better: avoid aliasing by oversampling prior to detection =>

\[U'(f) \otimes U'(f) \]
Motivation for Understanding Spectral Properties

- In most situations detection of complex data requires oversampling of the complex data first in order to avoid aliasing.
- In many applications (e.g. interferometry) resampling / interpolation of complex data is required.

Understanding and knowledge of the spectral properties of complex data (SSC) products is essential.
SAR Acquisition Geometry and Azimuth Spectrum

Quadratic approx. of range history \(R(t) \):

\[
R(t) \approx R_0 + \frac{v^2 t^2}{2 R_0}
\]

Azimuth phase history:

\[
\theta(t) = -\frac{4\pi}{\lambda} R(t)
\]

Instantaneous Doppler frequency:

\[
f(t) = \frac{1}{2\pi} \frac{d\theta(t)}{dt} \approx -\frac{2v^2}{\lambda R_0} t
\]

\[
f(t) \approx FM \cdot t
\]
SAR Acquisition Geometry and Azimuth Spectrum

\[f(t) = FM \cdot t \]

\[\Delta t_{\text{aperture}} \]

\[f_{\text{DC}} = 0 \]

\[f_{\text{DC}} = FM \cdot t_c \]

\[PBW_{\text{azimuth}} \]

\[R_0 \]

\[t = t_c = 0 \]

\[f_{\text{DC}} < 0 \]

\[R_C \]

\[t = 0 \]
SAR Azimuth Focusing

unfocused azimuth signal

azimuth signal focused to zero-Doppler time

focusing operation in the spectral domain:

\[f(t) = FM \cdot t \]
Stripmap Azimuth Focusing

\[f \]

\[f_{DC} \]

\[PBW_{azimuth} \]

\[T_{raw \ data \ acquisition} \]

\[T_{focused \ scene} \]
Spotlight: Azimuth Focusing

- **f**
- **t**
- **$f_{DC \text{ raw first}}$**
- **$f_{DC \text{ scene first}}$**
- **$f_{DC \text{ raw last}}$**
- **$f_{DC \text{ scene last}}$**

- $f = 0$
- $T_{\text{focused scene}}$
- $T_{\text{raw data acquisition}}$
- B_{target}
- PBW_{azimuth}
Spotlight: aliasing-free spectrum of the focused scene after sub-sampling

\[f_{\text{DC scene first}} \mod B_{\text{sampling}} \]

\[f_{\text{DC scene last}} \mod B_{\text{sampling}} \]

\[f = 0 \]

\[B_{\text{total}} \]

\[B_{\text{sampling}} > B_{\text{target}} \]

\[t \]

\[T_{\text{focused scene}} \]
ScanSAR Burst Azimuth Focusing

\[PBW_{\text{azimuth}} \]

\[f = 0 \]

\[T_{\text{raw data acquisition}} \]

\[T_{\text{focused burst}} \]
ScanSAR: aliasing-free spectrum of focused burst after sub-sampling close to Nyquist

ScanSAR: aliasing-free spectrum of focused burst after sub-sampling close to Nyquist
ScanSAR:
aliasing-free spectrum of focused burst after „relaxed“ sub-sampling
Ambiguity Distance

Where PRF can be found in XML File:

```
<instrument>
  (...)
<settings>
  (...)
<settingsRecord>
  (...)
  <PRF code="0">3.72849239956568954E+03</PRF>
  (...)
```

PRF in Hz
Projection of SSC to MGD and vice versa

- The product type MGD has nice properties like
 - very precise interpolation and multilooking free of aliasing due to adequate oversampling of complex data prior to detection.
 - Quadratic on-ground pixel spacing
- Therefore MGD products are very suitable for classification and feature extraction.
- But, the geometric projection is not very useful.
- Therefore the SSC-> MGD projection functions are kept very simple in order to facilitate easy (real or virtual) back projection of the data into the original slant range geometry.
Options for Geo-Referencing of MGD data

- If the interest is to know the precise point-wise geo-location of certain pixels, features or classification results there are two options:
 - Use the provided annotation files “MAPPING_GRID.bin” and “GEOREF.xml”
 - or
 - Use the annotated higher-order slant-range-to-ground-range (SLT2GR) polynomial for range projection and the annotated zero-Doppler velocity for first-order azimuth projection.

- If the interest is to obtain a complete geo-referenced image in a projection of choice the two separated MGD<->SSC projection functions can be easily incorporated into any (high-precision) user-defined projection, relating map-coordinates to azimuth time \(t \), and range delay \(\tau \) using the precise orbital state vectors and DEM data.
Accuracy of MGD to SSC re-projection using polynom inversion

0.3 \text{ \textmu m}

0.0 \text{ \textmu m}

-0.6 \text{ \textmu m}